

Har Hotzvim Hi-Tech Park, P.O.Box 4287 Jerusalem 9104201, Israel.

Tel: +972-2-587-2202, Fax: +972-2-587-1101 Email: info@alomone.com, www.alomone.com

## **Anti-Ryanodine Receptor 2**

## Cardiac Ryanodine Receptor, RyR2







Antigen included Shipped at room temp. QC tested

Cat #: ARR-002 **Size:** 25 µl, 50 µl, 0.2 ml Source: Rabbit Type: Polyclonal

Application: IH, WB Reactivity: H, M, R

May also work in: IC, IFC, IP

Application key: CBE- Cell-based ELISA, FC- Flow cytometry, IC- Immunocytochemistry, IE- Indirect ELISA, IFC- Indirect flow cytometry, IH- Immunohistochemistry, IP- Immunoprecipitation, LCI- Live cell imaging, N- Neutralization, WB- Western blot Species reactivity key: H- Human, M- Mouse, R- Rat

Control antigen included Lyophilized powder

## General information

Alomone Labs is pleased to offer a highly specific antibody directed against an epitope of human Ryanodine receptor 2 (RyR2). Anti-Ryanodine Receptor 2 antibody (#ARR-002) can be used in western blot analysis and immunohistochemistry applications. It has been designed to recognize RyR2 from human, rat and mouse samples.

## Related products for control experiments:

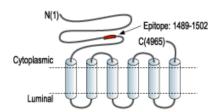
Control peptide antigen (supplied with the antibody free of charge).

## Anti-Ryanodine Receptor 2 antibody (#ARR-002) in the literature:

Western blot analysis (WB):

- Rat intrapulmonary artery lysate (1:400) (see Dahan, D. et al. (2012) in Product Citations).

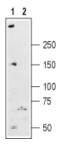
Immunohistochemistry (IH):


- Rat heart sections (1:50) (see Zhu-Mauldin, X. et al. (2012) in Product Citations).
- Rat tibialis anterior muscle sections (1:100) (see Kraner, S.D. et al. (2011) in Product Citations).

If you know of a relevant citation for this product please let us know.

#### Specifications

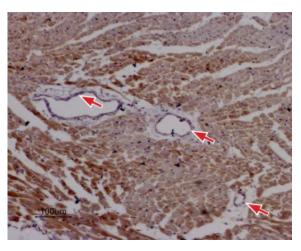
#### Immunogen


Peptide CAGESMSPGQGRNN, corresponding to amino acid residues 1489-1502 of human Ryanodine Receptor 2 (Accession Q92736). Intracellular, N-terminus.



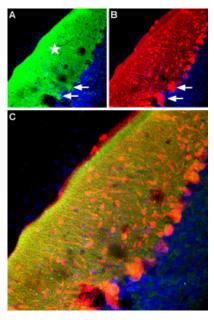
| Homology                             | Rat, mouse - identical.                                                                                                       |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Purity                               | Affinity purified on immobilized antigen.                                                                                     |
| Formulation                          | Lyophilized powder. Reconstituted antibody contains phosphate buffered saline (PBS), pH 7.4, 1% BSA, 0.05% NaN <sub>3</sub> . |
| Standard quality control of each lot | Western blot analysis.                                                                                                        |

## **Applications**


## Western blot



## Western blot analysis of rat heart membranes:


- 1. Anti-Ryanodine Receptor 2 antibody (#ARR-002), (1:200).
- 2. Anti-Ryanodine Receptor 2 antibody, preincubated with the control peptide antigen.

## Immunohistochemistry



## Expression of Ryanodine Receptor 2 in rat cardiac muscle

Immunohistochemical staining of paraffin-embedded sections of rat *myocardium* using **Anti-Ryanodine Receptor 2** antibody (#ARR-002), (1:50). Staining is specific for cardiomyocytes while smooth muscles cells in the artery walls are negative (red arrows). Hematoxilin is used as the counterstain.



#### Expression of Ryanodine Receptor 2 in mouse cerebellum

Immunohistochemical staining of mouse cerebellum frozen sections with **Anti-Ryanodine Receptor 2** antibody (#ARR-002), (1:100), (green fluorescence). A. The highest expression of Ryanodine Receptor 2 is in the molecular layer (Asterisk) but there is also some expression in the soma of Purkinje cells (arrows). B. In the same section, there is staining for parvalbumin (red), a marker for Purkinje cells. C. Merged image of panels A and B demonstrates that Ryanodine Receptor 2 is localized both in the area surrounding the dendritic tree and in the soma of Purkinje cells. DAPI is used as the counterstain (blue).

### Scientific background

### Scientific background

It is well established that cytosolic calcium (Ca2+) acts as a key second messenger in many intracellular pathways including synaptic transmission, muscle contraction, hormonal secretion, cell growth and proliferation.1,2 The primary intracellular Ca2+ storage/release organelle in most cells is the endoplasmic reticulum (ER) or the sarcoplasmic reticulum (SR) in striated muscle cells.

The ER and SR contain two Ca<sup>2+</sup> release channels families, the Inositol trisphosphate receptors (IP3Rs) and the Ryanodine receptors (RyRs).<sup>3</sup>

The Ryanodine receptor family consists of three different isoforms: The skeletal muscle isoform, Ryanodine Receptor type 1 (RyR1); the cardiac muscle isoform, Ryanodine Receptor type 2 (RyR2) and the brain isoform, Ryanodine Receptor type 3 (RyR3).3 The Ryanodine receptors are homotetrameric proteins. They play a key role in the mechanism of excitation-contraction coupling in striated muscle. Binding of Ryanodine to the Ryanodine Receptor causes to two major changes in the channel: a reduction in single-channel conductance and a marked increase in open state probability.

RyR2 serves as an intracellular Ca<sup>2+</sup> channel in the SR membrane. It is predominantly expressed in cardiac muscle where it plays a central role in cardiac excitation-contraction coupling. RyR2 is also expressed in the brain. 1-4

#### References

- 1. Chakrabarti, R. And Chakrabarti, R. (2006) J.Cell. Biochem. 99, 1503.
- 2. Eisner, D.A. et al. (2005) Exp.Physiol. 90, 3.
- 3. Bers, D.M. (2004) J.Mol. Cell. Cardiol. 37, 417.
- 4. Fill, M. and Copello, J.A. (2002) Physiol. Rev. 82, 893.

## **Product Citation**

# Publications using this product

- 1. Dahan, D. et al. (2012) Am. J. Physiol. 303, L824.
- 2. Zhu-Mauldin, X. et al. (2012) J. Biol. Chem. 287, 39094.
- 3. Kraner, S.D. et al. (2011) Am. J. Physiol. 300, R1384.
- 4. Yoshida, S. et al. (2010) Neurosci. Res. 68, 322.

For research purposes only, not for human use

Last update: 02/07/2014

Close